Convergence Proof for the Perceptron Algorithm

Michael Collins

Figure 1 shows the perceptron learning algorithm, as described in lecture. In this note we give a convergence proof for the algorithm (also covered in lecture).

The convergence theorem is as follows:

Theorem 1 Assume that there exists some parameter vector θ^* such that $||\theta^*|| =$ 1, and some $\gamma > 0$ such that for all $t = 1 \dots n$,

$$y_t(\underline{x}_t \cdot \underline{\theta}^*) \ge \gamma$$

Assume in addition that for all t = 1 ... n, $||\underline{x}_t|| \le R$.

Then the perceptron algorithm makes at most

$$\frac{R^2}{\gamma^2}$$

errors. (The definition of an error is as follows: an error occurs whenever we have $y' \neq y_t$ for some (j, t) pair in the algorithm.)

Note that for any vector \underline{x} , we use $||\underline{x}||$ to refer to the Euclidean norm of \underline{x} , i.e., $||\underline{x}|| = \sqrt{\sum_i x_i^2}.$

Proof: First, define θ^k to be the parameter vector when the algorithm makes its k'th error. Note that we have

$$\theta^1 = 0$$

Next, assuming the k'th error is made on example t, we have

$$\underline{\theta}^{k+1} \cdot \underline{\theta}^* = (\underline{\theta}^k + y_t \underline{x}_t) \cdot \underline{\theta}^*$$
 (1)

$$= \underline{\theta}^{k} \cdot \underline{\theta}^{*} + y_{t}\underline{x}_{t} \cdot \underline{\theta}^{*}$$

$$\geq \underline{\theta}^{k} \cdot \underline{\theta}^{*} + \gamma$$
(2)

$$\geq \underline{\theta}^k \cdot \underline{\theta}^* + \gamma \tag{3}$$

Eq. 1 follows by the definition of the perceptron updates. Eq. 3 follows because by the assumptions of the theorem, we have

$$y_t \underline{x}_t \cdot \underline{\theta}^* \geq \gamma$$

Definition: sign(z) = 1 if $z \ge 0$, -1 otherwise.

Inputs: number of iterations, T; training examples (\underline{x}_t, y_t) for $t \in \{1 \dots n\}$ where $\underline{x} \in \mathbb{R}^d$ is an input, and $y_t \in \{-1, +1\}$ is a label.

Initialization: $\underline{\theta} = \underline{0}$ (i.e., all parameters are set to 0)

Algorithm:

- For $j = 1 \dots T$
 - For $t = 1 \dots n$
 - 1. $y' = \operatorname{sign}(x_t \cdot \theta)$
 - 2. If $y' \neq y_t$ Then $\underline{\theta} = \underline{\theta} + y_t \underline{x}_t$, Else leave $\underline{\theta}$ unchanged

Output: parameters θ

Figure 1: The perceptron learning algorithm.

It follows by induction on k (recall that $||\theta^1|| = 0$), that

$$\underline{\theta}^{k+1} \cdot \underline{\theta}^* \ge k\gamma$$

In addition, because $||\underline{\theta}^{k+1}|| \times ||\underline{\theta}^*|| \ge \underline{\theta}^{k+1} \cdot \underline{\theta}^*$, and $||\underline{\theta}^*|| = 1$, we have

$$||\underline{\theta}^{k+1}|| \ge k\gamma \tag{4}$$

In the second part of the proof, we will derive an upper bound on $|\underline{\theta}^{k+1}||$. We have

$$||\underline{\theta}^{k+1}||^2 = ||\underline{\theta}^k + y_t \underline{x}_t||^2 \tag{5}$$

$$= ||\underline{\theta}^{k} + y_{t}\underline{x}_{t}||$$

$$= ||\underline{\theta}^{k}||^{2} + y_{t}^{2}||\underline{x}_{t}||^{2} + 2y_{t}\underline{x}_{t} \cdot \underline{\theta}^{k}$$

$$\leq ||\underline{\theta}^{k}||^{2} + R^{2}$$

$$(6)$$

$$\leq ||\underline{\theta}^k||^2 + R^2 \tag{7}$$

The equality in Eq. 5 follows by the definition of the perceptron updates. Eq. 7 follows because we have: 1) $y_t^2||\underline{x}_t||^2 = ||\underline{x}_t||^2 \le R^2$ by the assumptions of the theorem, and because $y_t^2 = 1$; 2) $y_t\underline{x}_t \cdot \underline{\theta}^k \le 0$ because we know that the parameter vector $\underline{\theta}^k$ gave an error on the t^{th} example.

It follows by induction on k (recall that $||\underline{\theta}^1||^2 = 0$), that

$$||\underline{\theta}^{k+1}||^2 \le kR^2 \tag{8}$$

Combining the bounds in Eqs. 4 and 8 gives

$$k^2\gamma^2 \le ||\underline{\theta}^{k+1}||^2 \le kR^2$$

from which it follows that

$$k \le \frac{R^2}{\gamma^2}$$