NTU-HsuanTienLin-MachineLearning(林轩田机器学习)

1. Course Info

台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:《机器学习基石》和《机器学习技法》。这两门课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面,介绍了机器学习领域经典的一些算法,包括支持向量机、决策树、随机森林、神经网络等等。在此,笔者本人的笔记分享给大家,希望和大家多交流。

首先附上这两门课的主页:

Hsuan-Tien Lin 机器学习基石

2. 课程内容

2.1 《机器学习基石》

这门课主要涉及机器学习关键问题的四个方面:

  • When Can Machine Learn?

  • Why Can Machine Learn?

  • How Can Machine Learn?

  • How Can Machine Learn Better?

其中每个方面包含4节课,总共有16节课。具体所有课程内容如下:

  • When Can Machine Learn?

  • [The Learning Problem]

  • [Learning to Answer Yes/No]

  • [Types of Learning]

  • [Feasibility of Learning]

  • Why Can Machine Learn?

  • [Training versus Testing]

  • [Theory of Generalization]

  • [The VC Dimension]

  • [Noise and Error]

  • How Can Machine Learn?

  • [Linear Regression]

  • [Logistic Regression]

  • [Linear Models for Classification]

  • [Nonlinear Transformation]

  • How Can Machine Learn Better?

  • [Hazard of Overfitting]

  • [Regularization]

  • [Validation]

  • [Three Learning Principles]

2.2 《机器学习技法》

这门课主要涉及机器学习经典算法的三个方面:

  • Embedding Numerous Features: Kernel Models

  • Combining Predictive Features: Aggregation Models

  • Distilling Implicit Features: Extraction Models

总共有16节课。具体所有课程内容如下:

  • Embedding Numerous Features: Kernel Models

  • [Linear Support Vector Machine]

  • [Dual Support Vector Machine]

  • [Kernel Support Vector Machine]

  • [Soft-Margin Support Vector Machine]

  • [Kernel Logistic Regression]

  • [Support Vector Regression]

  • Combining Predictive Features: Aggregation Models

  • [Blending and Bagging]

  • [Adaptive Boosting]

  • [Decision Tree]

  • [Random Forest]

  • [Gradient Boosted Decision Tree]

  • Distilling Implicit Features: Extraction Models

  • [Neural Network]

  • [Deep Learning]
  • [Radial Basis Function Network]

  • [Matrix Factorization]

  • [Finale]

3. 资源汇总

笔者在学习这门课的过程中整理了各种课程资源,包括视频、笔记、书籍等。具体如下:

3.1 课程视频

Youtube上的课程视频在如下:

机器学习基石(林轩田)

机器学习技法(林轩田)

3.2 课程课件

此项目包含了林轩田机器学习课程完整的课件PPT

3.3 课程笔记

这是笔者最用心整理也是花的时间最多的,读者可以边看视频边看我的笔记,希望能给读者提供微薄之力。

3.4 参考书籍

林轩田机器学习基石这门课有一个配套教材:《Learning From Data》,林轩田也是编者之一。这本书的主页为:

Learning From Data